智能零售柜商品识别
下载yolov5:
bash
git clone https://github.com/ultralytics/yolov5
进入yolov5文件夹,下载依赖文件
bash
pip install -r requirements.txt
深度学习第一步 准备好数据集:
附件中的train.zip。
图片数据集为稀疏商品图片, 格式为jpg,标注文件符合VOC数据集类型,文件格式为xml。
数据集分为 训练集,验证集,测试集,
数据集分割
首先从数据集中抽取一百张图片以及对应的标签文件,作为测试集
接下来是对训练集和验证集进行分类
以下是分类的代码
python
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
classes = ['3+2-2', '3jia2', 'aerbeisi', 'anmuxi', 'aoliao', 'asamu', 'baicha', 'baishikele', 'baishikele-2', 'baokuangli', 'binghongcha', 'bingqilinniunai', 'bingtangxueli', 'buding', 'chacui', 'chapai', 'chapai2', 'damaicha', 'daofandian1', 'daofandian2', 'daofandian3', 'daofandian4', 'dongpeng', 'dongpeng-b', 'fenda', 'gudasao', 'guolicheng', 'guolicheng2', 'haitai', 'haochidian', 'haoliyou', 'heweidao', 'heweidao2', 'heweidao3', 'hongniu', 'hongniu2', 'hongshaoniurou', 'jianjiao', 'jianlibao', 'jindian', 'kafei', 'kaomo_gali', 'kaomo_jiaoyan', 'kaomo_shaokao', 'kaomo_xiangcon', 'kebike', 'kele', 'kele-b', 'kele-b-2', 'laotansuancai', 'liaomian', 'libaojian', 'lingdukele', 'lingdukele-b', 'liziyuan', 'lujiaoxiang', 'lujikafei', 'luxiangniurou', 'maidong', 'mangguoxiaolao', 'meiniye', 'mengniu', 'mengniuzaocan', 'moliqingcha', 'nfc', 'niudufen', 'niunai', 'nongfushanquan', 'qingdaowangzi-1', 'qingdaowangzi-2', 'qinningshui', 'quchenshixiangcao', 'rancha-1', 'rancha-2', 'rousongbing', 'rusuanjunqishui', 'suanlafen', 'suanlaniurou', 'taipingshuda', 'tangdaren', 'tangdaren2', 'tangdaren3', 'ufo', 'ufo2', 'wanglaoji', 'wanglaoji-c', 'wangzainiunai', 'weic', 'weitanai', 'weitanai2', 'weitanaiditang', 'weitaningmeng', 'weitaningmeng-bottle', 'weiweidounai', 'wuhounaicha', 'wulongcha', 'xianglaniurou', 'xianguolao', 'xianxiayuban', 'xuebi', 'xuebi-b', 'xuebi2', 'yezhi', 'yibao', 'yida', 'yingyangkuaixian', 'yitengyuan', 'youlemei', 'yousuanru', 'youyanggudong', 'yuanqishui', 'zaocanmofang', 'zihaiguo', '']
TRAIN_RATIO = 99
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
wd = os.getcwd()
data_base_dir = os.path.join(wd, "train/")
if not os.path.isdir(data_base_dir):
os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "train/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "xml/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "img/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "labels/")
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w',encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w',encoding='utf-8')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a',encoding='utf-8')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a',encoding='utf-8')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
for i in range(0, len(list_imgs)):
path = os.path.join(image_dir, list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + '.txt'
label_path = os.path.join(yolo_labels_dir, label_name)
prob = random.randint(1, 100)
if (prob < TRAIN_RATIO): # train dataset
if os.path.exists(annotation_path):
train_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_train_dir + voc_path)
copyfile(label_path, yolov5_labels_train_dir + label_name)
else: # test dataset
if os.path.exists(annotation_path):
test_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_test_dir + voc_path)
copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()
分割好的数据集文件夹结构:
md
- train
- labels
- train
- val
- images
- train
- val
为了符合coco数据集格式,需要将xml标签文件转化为txt格式:
python
def convert_annotation(image_id):
in_file = open('train/train/xml/%s.xml' % image_id) # xml路径
out_file = open('train/train/labels/%s.txt' % image_id, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
def convert(size, box): # 边界框的转换
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
配置YAML文件
yaml
architecture: yolov5s ##使用yolov5预训练
batch_size: 16
epochs: 50
lr: 0.001
names: ##类别
- 3+2-2
- 3jia2
- aerbeisi
- anmuxi
- aoliao
- asamu
- baicha
- baishikele
- baishikele-2
...
nc: 113 ##类别数目
train: train/images/train ##训练集路径
val: train/images/val ##验证集路径
训练模型:
bash
python train.py --img 640 --batch 16 --epochs 50 --data ./data/my.yaml --cfg ./models/yolov5s.yaml --weights yolov5s.pt
训练好的模型存在runs/exp/best.pt
TensorRT加速
下载好tensorrt之后
bash
python export.py --weights best.pt --data data/my.yaml --include engine --device 0 --half
将best.pt导出为best.engine
目标识别
bash
python detect.py --source train/images/val --data data/my.yaml --weights best.engine --device 0